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Introduction

Lead smelting is a significant source 
of global soil contamination.1-4 

Surface soil lead concentrations in 
residential areas can result in exposure 
to humans through pica (hand-to-
mouth) behavior and the inhalation 
and ingestion of contaminated soil and 
dust.5,6 Accordingly, several studies 
have demonstrated that blood lead 
levels (BLLs) are strongly associated 
with soil lead concentrations.6-11 There 
is currently no known safe level of 
exposure to lead, although the United 
States Centers for Disease Control 
(CDC) utilizes a reference dose of 5 
µg/dL.12,13 Childhood lead exposure 
can result in intelligence quotient 
decrement, decreased lifetime earnings 
and higher rates of aggravated assault, 
among other adverse outcomes.14-18 
Early life exposures have also been 
shown to not remit with age.17,19 

Although rare, extreme acute lead 
exposure can result in encephalopathy 
and death.20 Lead exposure in adults 

most significantly results in increased 
incidence of heart disease, even at low 
levels of exposure.20,21 The Institute 
for Health Metrics and Evaluation 
(IHME) estimates that lead exposure 
accounted for 540,000 deaths globally 
in 2016.22

Over the course of the 20th century, 
environmental lead contamination 
was most strongly associated with 
the use of tetraethyl lead additives 
in gasoline.23-26 In the United States, 
lead-based paint was also a significant 
source of exposure.27,28 Following the 
cessation of the use of lead in these 
two common products, blood levels 
have fallen significantly. For example, 
in the United States, average childhood 
blood lead declined from around 

15 µg/dL in the mid-1970s, falling 
to < 1 µg/dL today.27,29 Elsewhere in 
high-income countries, persistently 
elevated environmental and biological 
lead levels continue to be documented 
around mining and smelting 
locations.30,31 

In low- and middle-income countries 
(LMIC), current major sources of 
lead exposure include traditional 
ceramic glazes and the manufacture 
and recycling of lead-acid batteries, 
particularly when conducted in an 
informal setting.32-35 Discrete lead 
poisoning events have also been 
identified at mining and smelting 
locations.2,36-38 

In Kenya, elevated environmental 
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and blood lead concentrations have 
been documented in occupational 
settings.39 However, there is a paucity 
of information about exposures in 
the home or in residential areas. 
Data collected as part of the Pure 
Earth (New York, NY, USA) Toxic 
Sites Identification Program indicate 
that domestic lead exposure may 
be significant.40 The program has 
identified and conducted rapid 
assessments of 60 discrete lead 
contaminated sites located in 
residential areas in Kenya since 2009. 

A lead poisoning event in 2014 
centered around a lead smelter in the 
coastal city of Mombasa garnered 
international attention.41-45 News 
reports documented elevated BLLs and 
three deaths in the worker population 
at the refinery.46 Limited reports of 
elevated BLLs were also later found in 
Owino Uhuru, an informal settlement 
of approximately 3,000 residents with 
an area of 28 000 m2 bordering the 
northern wall of the facility (Figure 
1). A 2010 study of three children 
found BLLs of 12, 17 and 23 µg/
dL, while a later report of a separate 
child found a BLL of 32 µg/dL.43,46 A 
community leader in Owino Uhuru 
and former employee of the smelter 
was awarded the prestigious Goldman 
Environmental Prize for her work in 
raising public awareness that would 
eventually lead to the closure of the 
facility in 2014.45,47 The community 
subsequently filed a lawsuit against 
the national government for USD 
1.5 million in compensation for its 
failure to monitor emissions from the 
smelter.48 

Following the closure of the facility in 
2015, a study of environmental lead 
concentrations and community BLLs 
was carried out jointly by the Kenya 
Ministry of Health and the CDC. 
The study found a geometric mean 
surface soil lead concentration in the 
community of 146.5 mg/kg (geometric 
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Figure 1 — Location and concentration of in-situ X-ray fluorescence 
instrument surface soil lead measurements in Owino Uhuru
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standard deviation (GSD): 5.2) and 
dust lead loadings in homes of 1.5 µg/
ft2 (GSD: 12.3).49 These results were 
significantly below applicable United 
States Environmental Protection 
Agency (USEPA) screening levels for 
residential soil and household dust of 
400 mg/kg and 40 µg/ft2, respectively.50 
In contrast with the low environmental 
levels, the study found a geometric 
mean BLL in children of 7.4 μg/
dL (GSD: 1.9) in the community, 
exceeding both the CDC reference 
dose of 5 µg/dL and the BLLs found in 
a control neighborhood away from the 
facility of 3.7 μg/dL (GSD: 1.9).13,49 

Importantly, while the BLLs found 
in Owino Uhuru exceeded CDC 
guidelines, they were somewhat lower 
than those reported in communities 
near lead smelters elsewhere in 
LMICs. Researchers working near lead 
smelters in the Dominican Republic, 
Mexico, Senegal and Vietnam, for 
example, have reported population-
wide BLLs in children of 71 µg/
dL (arithmetic mean), 27.6  µg/dL 
(median), 40.4 µg/dL (median), and 
129.5 µg/dL (mean), respectively.2,51-54 

Despite the absence of evidence 
of residual contamination, the site 
continues to attract national and 
international attention.55,56 To further 
assess the veracity of the claims of 
contamination and provide the basis for 
necessary human health intervention 
strategies, an investigation of surface 
soil lead concentrations was carried 
out in Owino Uhuru in June 2017. This 
type of assessment forms the evidence-
based rationale for any subsequent 
actions required to mitigate potential 
risk of harm arising from soil and dust 
contamination. Moreover, the results of 
the assessment in the context of its high 
profile potentially provide insight into 
the setting of public health priorities. 

The results of this assessment are 
presented along with a simple air 

deposition model developed to estimate 
likely surface soil lead concentrations 
resulting from smelter emissions during 
its operation. The results of these 
models were used to estimate BLLs in 
children and adults in the absence of 
population data on exposures. 

Methods

Investigators carried out an assessment 
over the course of a single day in 
June 2017 with the assistance of 
community leaders. Fifty-nine in 
situ soil measurements were taken 
using an Innov-X tube-based (40 kV) 
alpha X-ray fluorescence instrument 
(pXRF) over a ~12 000 m2 section of 
the Owino Uhuru neighborhood that 
is adjacent to the facility. The pXRF 
has a lower detection limit of 5 mg/
kg.57 Fifty-seven measurements were 
taken directly from surface soil, while 
two were taken at a depth of 10 cm. 
Two of the surface soil measurements 
were taken from an area within 
the perimeter wall of the smelter, 
which are unlikely to be accessed by 
humans and thus are not indicative 
of community exposure. The pXRF 
was calibrated before the assessment 
using an alloy-grade 316 steel clip and 
measurement accuracy was evaluated 
by assessment of a National Institute 
of Standards and Technology (NIST) 
standard (2702: Inorganics in Marine 
Sediment) during the assessment.58 
The NIST reference material contains 
a known value for lead of 132.8 mg/
kg. The pXRF measurement of this 
material found a value of 137 mg/kg 
(+/-10) for lead and was thus within 
acceptable range. The inside of the 
facility was not accessible and was not 
assessed.

Spatial and statistical analysis 

Latitude and longitude for each 
sample point were collected using 
World Geodetic System 1984 format 
using a Garmin eTrex 10 with an 

accuracy of < 3 meters.59 Spatial and 
statistical analyses were performed 
using ArcMap 10.5 and Stata 15.60,61  
Basic descriptive statistics of the data 
were generated to assess exposure. In 
addition, simple linear regression was 
conducted to assess any relationship 
between lead concentration and 
proximity to the smelter.

Aerial deposition model 

To determine soil lead concentrations 
resulting from aerial emissions, a simple 
algorithm was developed based on 
known deposition rates of lead smelters 
in different settings. To determine 
the spatial extent of lead deposition, 
a Gaussian plume model was used to 
estimate the likely distributions in the 
Hybrid Single-Particle Lagrangian 
Integrated Trajectory (HYSPLIT) model 
developed by the United States Oceanic 
and Atmospheric Administration.62 
Using contemporaneous meteorological 
data and the inputs set out below, 
the HYSPLIT model indicated that 
deposition was uniform within a range 
of 750 m of the smelter in all directions. 
The entire residential area of the Owino 
Uhuru falls within 300 m of the smelter 
stack. Thus, deposition was assumed to 
be uniform across the community. 

A number of studies indicate that the 
accumulation of lead in soil is additive, 
meaning that concentrations increase 
proportionate to deposition.63-65 
Alloway sets out a simple mass 
balance equation where background 
concentrations are increased by the 
accumulation of metals from various 
sources with any reductions occurring 
due to crop removal, leaching, 
volatilization or erosion. In the case 
of Owino Uhuru, as no agriculture 
is present in the assessed areas, crop 
removal would not be a relevant factor. 
Similarly, lead is highly immobile 
in soil and is not volatile (1.77 mm 
mercury at 1,000oC), thus leaching and 
volatilization would not appreciably 
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affect the net concentration of lead 
in soil.66,67 Equation 1 sums the total 
estimated inputs and only accounts for 
limited migration. 

Equation 1

where 

SCmg/kg equals surface soil lead 
concentration 
 
Dmg/m2 equals deposition rate of lead 
in mg/m2 per day 
 
Od equals number of days of operation 
per year 
 
Oy equals number of years of 
operation  
 
SVm3 equals volume of soil in m3 
 
SMkg/m3 equals mass in kilograms of 
one unit of soil  
 
BCmg/kg equals background soil lead 
concentration

Deposition rate inputs were based 
on van Alphen’s study of an area 
surrounding a lead smelter in Port 
Pirie, New South Wales, Australia. 
This study found a mean deposition 
rate of 18.8 mg/m2/day within 600 
m of the smelter with maximum 
deposition rate of 299 mg/m2/day.68 
These values are higher than those 
documented elsewhere. Studies at lead 
smelters in Arnhem (the Netherlands), 
El Paso (Texas, USA), Hoboken 
(Belgium), Missouri (USA), and Port 
Pirie (Australia) found deposition 
rates ranging from 0.1–17.5 mg/m2/
day, for example.30,68-72 There are no 
known studies of deposition rates at 
rudimentary smelters like the one 
operated by the Mombasa facility, thus 
the selection of the highest deposition 
rates identified in the literature is 

intended to best approximate the 
poor conditions present at the facility. 
Similarly, a conservative stack height 
of 10 m was used for the purposes of 
modeling deposition. 

Days of operation were assumed to be 
260 days per year based on 5 days of 
operation per week for 52 weeks. The 
time period of the smelter operation was 
set at 10 years, based on news reports, 
which were the only available data.46 

To determine the relevant mass of soil, 
a volume was calculated based on a 
likely penetration of deposited lead to 
a maximum depth of 2 cm. The 2 cm 
value is based on studies of the isotopic 
composition of soil lead at a smelter in 
Mount Isa, Australia.73,74 Mackay et al. 
found that lead found below this depth 
tended to be associated with naturally 
occurring deposits, rather than aerial 
deposition from the smelter.73 The 
soil type at the site is Haplic Lixisol 
with an approximate clay, silt and 
sand content of 18%, 27% and 55%, 
respectively and a mass of roughly 1.4 
grams/cm3.75 These soils are conducive 
to metals mobility more generally, as 
discussed below. For the purpose of 
the sensitivity analysis the model was 
also run with a depth of 5 cm. Studies 
at a smelter in Boolaroo, Australia 
found deposited lead at a maximum 
depth of 5 cm with 80% less lead in the 
lower 2.5 cm than the top 2.5 cm.76

Background lead concentrations for 
the study area were not available. As an 
alternative, the mean background lead 
concentration for the earth’s crust of 17 
mg/kg was used.77 For context, crustal 
lead concentrations average 25.8 mg/
kg in the United States and range 
from 8.4–40 mg/kg in Europe and the 
United Kingdom.65,78

Blood lead level assessment 

To estimate BLLs for children, the 
USEPA Integrated Exposure Uptake 

Biokinetic model for children 
(IEUBK) was used.7 Following IEUBK 
guidelines, default values for lead from 
all exposure pathways were used and 
measured in situ soil concentrations 
were entered.79 Default ingestion rates 
were then adjusted upward to account 
for higher ingestion rates in LMICs 
(250–400 mg/day).10,80 Results were 
also calculated using the default values 
(85–135 mg/day). For adults, the 
USEPA Adult Lead Methodology was 
used.7 Again, results were calculated 
using both default and augmented 
ingestion rates to account for increased 
exposure in LMICs (50–200 mg/
day). Additionally, exposure duration 
was increased to account for a 
residential setting, as the Adult Lead 
Methodology’s default values were 
intended for occupational exposures. 

The IEUBK model was also used to 
estimate likely environmental Pb 
levels in air and soil required for a 
hypothetical 2-year-old child to have 
a BLL of 20 µg/dL. The IEUBK model 
assigns this age a higher BLL than 
younger or older age groups. It was 
selected to provide the most sensitivity 
to environmental levels.  

Results

The results of both the in situ surface 
soil measurements and aerial 
deposition modeling indicate that 
environmental lead levels in Owino 
Uhuru are within or slightly above 
US regulatory screening levels and 
generally consistent with urban areas 
globally.

Surface soil assessment

The mean surface soil lead 
concentration in the areas assessed 
with the pXRF was 224 mg/kg (95% 
CI: 15–434). The median value was 47 
mg/kg. Table 1 presents the summary 
results of the surface soil assessment. 
Four samples (7%) tested above 400 
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mg/kg, the USEPA screening level 
for bare soil where children play.81 
Those four samples had the following 
concentrations: 582, 871, 1456 and 
5824 mg/kg. The highest and third 
highest samples (5,824 and 871) were 
taken from an enclave in the perimeter 
wall of the smelter that is unlikely to 
be regularly accessed by humans and 
thus are not indicative of community 
exposure. Removing these from the 
likely exposure scenario results in a 
mean surface soil concentration of 
110 mg/kg (95% CI: 54–168), below 
USEPA and Environment Canada 
screening levels of 400 mg/kg and 140 
mg/kg, respectively.81,82 Kenya has 
not yet developed its own guidance 
values for soil metal concentrations, 
including lead. Two samples were 
collected at a depth of 10 cm adjacent 
to the highest reading (5,824 mg/kg) 
for the purpose of assessing possible 
migration. These readings were 43 and 
72 mg/kg, indicating insignificant down 
profile migration of lead from surface 
soils, which is consistent with studies of 
atmospherically deposited smelter soil 
lead contamination elsewhere.73,74

Within the targeted 12,000 m2 sample 
area, soil lead measurements were 
spaced an average of 9.4 m apart (95% 
CI: 7.8–11.2) (Figure 1). There was 
no statistically significant association 
between proximity to the smelter and 
soil lead concentrations (p<0.05). The 
mean soil lead concentration of the 
eight samples taken within 3 m of the 

facility perimeter wall was 1,026 mg/
kg (95% CI: 611–2663). The mean for 
the eight samples taken from 3 m to 10 
m was 231 mg/kg (95% CI: 183–646) 
and the mean for the 43 samples taken 
beyond 10 m was 66 mg/kg (95% CI: 
47–86). The sample taken closest to 
the smelter site was at the base of the 
perimeter wall, while the furthest was 
taken at a distance of 130 meters. 

Aerial deposition model results

Using van Alphen’s mean deposition 
rate of 18 mg/m2/day and a 2 cm 
estimate for the likely maximum 
penetration of lead into surface soil 
resulted in an additional accumulation 
of 0.64 mg/kg/day within 750 meters of 
the facility while it was operating. Using 
the same deposition rate and the less 
conservative surface soil penetration 
estimate of 5 cm results in an additional 
accumulation of 0.26 mg/kg/day. These 
rates would have resulted in a surface 
soil concentration of 686–1,688 mg/
kg after ten years of operation. To 
arrive at the mean value identified in 
pXRF sampling of 110 mg/kg, a daily 
deposition rate of 1–2.51 mg/m2/day 
(0.036 mg/kg/day) would be required.  
 
Blood lead level assessment 

Current BLLs for 0- to 7-year-olds 
were estimated to be from 1.4–2.4 µg/
dL using the default ingestion values 
in the IEUBK and 2.7–5.1 µg/dL 
using the augmented values. Current 

BLLs of adults were estimated to be 
1.8–2.6 µg/dL, depending on the 
ingestion rate used. For surface soil 
exposure to result in a BLL of 20 µg/
dL in 2-year-olds, an approximate 
surface soil concentration of ~2,500 
mg/kg would be required with default 
ingestion values and ~850 mg/kg with 
the augmented values. With regard to 
air concentrations, a level of ~24 µg/
m3 would be required for a 2-year-old 
to have a BLL of 20 µg/dL, assuming a 
soil lead concentration of 110 mg/kg.

Discussion

Soil lead levels in Uhuru Owino 
seem to fall within internationally 
accepted screening levels and are at 
or below mean values in other cities 
globally. Abuja (Nigeria), Boston 
(USA), Brisbane (Australia), Glasgow 
(UK) and Stockholm (Sweden), for 
instance, have all been reported 
as having average city-wide soil 
concentrations exceeding 200 mg/kg.83 
In Owino Uhuru, the average soil lead 
concentration in accessible areas was 
110 mg/kg.

The surface soil lead levels currently 
present in Owino Uhuru are unlikely 
to produce elevated BLLs, although 
elevated BLLs were reported at the site 
during operation or shortly after.7,43,49 
One possible explanation for the 
discrepancy could be a decline in 
surface level lead concentrations over 
time due to migration, meaning that 
current surface soil lead concentrations 
are not representative of soil lead 
concentrations while the smelter was 
operating. Lead is generally immobile 
in most soils, taking perhaps 700 
years to halve in concentration in 
certain soil types.66 A number of 
factors can influence its mobility, 
including pH, cation exchange capacity 
and texture.84 Low cation exchange 
capacity (<2 cmol(+) kg), low pH, 
and a sandy texture are all associated 
with increasing lead mobility.85,86 
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However, even in locations where all or 
some of these conditions are present, 
very limited mobility of lead through 
soil profiles has been reported.87-89 
Teutsch et al., for example, found 
similar lead contamination profiles at 
the same location 15 years apart, with 
measurable but very small amounts of 
lead migrating at a rate of up to 1 cm/
year.89 The Haplic Lixisol soil in Owino 
Uhuru has an approximate cation 
exchange capacity of 1.8 cmol(+) kg 
and a pH of 5.9.75 Its clay, silt and sand 
content are roughly 18%, 27% and 55%, 
respectively.75 Thus, while these soils 
are more amenable to migration than 
others, migration is unlikely to account 
for any significant difference in surface 
soil concentration over the 10-year 
period between the opening of the 
smelter and the execution of this study. 

A second possible explanation for 
the discrepancy between past BLLs 
and the current environmental levels 
present is that the primary exposure 
pathway to the community while 
the smelter was operating was the 
inhalation of airborne lead. Air lead 
concentrations would have declined 
immediately following the closing 
of the smelter. Reducing airborne 
sources of lead exposure near smelters 
has been strongly associated with 
declines in BLLs.76,90,91 No data are 
available on airborne concentrations 
at the site, either currently or while 
the smelter was operating. Given the 
limited data on the smelter operations, 
it was beyond the scope the current 
study to model those concentrations. 
Elsewhere, air lead levels exceeding 
1 µg/m3 have been associated with 
BLL measurements above 10 µg/dL 
in children.92 In Port Pirie, air lead 
concentrations were recorded at levels 
up to 21.44 μg/m3.93 

A separate likely source of exposure is 
associated with the workplace. Several 
residents with elevated BLLs were 
reported to have worked at the smelter, 

and anecdotal evidence indicates that 
children spent time in the facility 
during work hours. Additionally, take-
home risk, or workers’ inadvertent 
transporting of material on their 
person from the workplace to the home 
environment, could have also played a 
significant role as has been documented 
in multiple settings.94-96 Interior surfaces 
were not assessed as part of this study, 
although those assessed as part of the 
Ministry of Health/CDC effort shortly 
after the closing of the facility found 
very low lead dust loadings.49  

Given that the key sources of exposure 
were most likely associated with the 
operation of the facility, the need for 
mitigation work in Owino Uhuru 
may not be as pressing as presented 
elsewhere. The former facility very 
probably contains high levels of lead 
on site, which should be appropriately 
considered in any future land use plans. 

Informal housing

There is a significant shortage of 
housing in urban areas in Kenya, with 
approximately 56% of urban dwellers 
living in informal settlements.97 These 
settlements are often located on 
marginal lands, including areas prone 
to flooding or landslides.97 In the case 
of Owino Uhuru, the settlement is an 
area that is characterized by industrial 
uses.98 It is bordered on two of three 
sides by industrial facilities and is 
accessed primarily through industrial 
land. A master plan for the city 
currently under development envisions 
the reclamation of Owino Uhuru for 
industrial ends.98 Industrial activity 
can play a critical role in economic 
development in LMICs, while siting 
residential areas sufficiently distanced 
from heavy industry, including lead 
smelting, could mitigate the most 
significant exposures.34,99 Here, 
inhibiting the likely illegal occupation 
of industrial land may have mitigated 
much of the adverse impacts.

Setting public health priorities

A number of factors potentially 
influence the allocation of public 
health resources. These could include 
political forces, societal values and 
economic justifications, among 
others.100-102 In response to the various 
challenges implicit in allocating 
resources in public health, there 
has been a general coalescence in 
recent decades around rational and 
transparent approaches. Foremost 
among these is the notion of evidence-
based decision making, commonly 
articulated in burden of disease, 
cost effectiveness, or equity analysis 
approaches.102 These approaches 
seek to make the best use of finite 
resources through “the conscientious, 
explicit, judicious and reasonable use 
of modern, best evidence in making 
decisions.”103,104 

Within global public health, 
it is arguable that the issue of 
environmental lead poisoning receives 
proportionately less attention relative 
to its impact than other public health 
risks. IHME, for instance, calculated 
that lead exposure attributed to 13.9 
million disability-adjusted life years 
and 540,000 deaths globally 2016.22 
As context, this amounts to about 0.6 
% of all disability-adjusted life years 
and about 1% of all deaths globally in 
the same year.22 In addition, there are 
indications that this value may be an 
underestimation.33 Major sources of 
environmental lead poisoning globally 
include industrial mining and smelting 
operations, lead-based ceramic 
glazes, and the recycling of used lead 
acid batteries.105 Lead exposure also 
results in a range of adverse societal 
impacts, including increased rates 
of violence and decreased economic 
output, that are not captured in disease 
burden approaches.15,106,107 Despite 
this considerable impact, there is 
currently no international convention 
or multi-lateral funding mechanism 
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to support work related to lead 
contamination, resulting in a resource-
poor environment for potential 
implementers. 

In the context of disproportionately 
limited funding for lead interventions, 
the importance of evidence-based 
decision making is augmented. Put 
differently, the burden of proof to 
justify interventions should be high. 
The residents of Owino Uhuru are 
subject to myriad environmental 
health and livelihood risks common 
to life in informal settlements.108 

However, this study has found that 
those related to lead exposure were 
likely mitigated with the closing 
of the facility. The lead poisoning 
event in Owino Uhuru continues to 
receive national and international 
media attention despite the absence 
of current information regarding the 
health impact.56,109,110 In evaluating the 
relative importance of an intervention 
in Owino Uhuru versus similar 
projects elsewhere, policy makers 
should be encouraged to utilize 
evidence like that presented here to 
form the basis of their decisions. 

Limitations

A key limitation in the present 
study is the heavy reliance on pXRF 
measurements. The instrument was 
calibrated, and accuracy was confirmed 
in accordance with the manufacturer’s 
instructions. When conducted in 
sufficient quantity, pXRF measurements 
have been shown to closely approximate 
wet chemistry techniques.111 However, 
no samples from this study were sent 
for laboratory analysis. Measurements 
of the NIST reference material during 
the assessment found that the pXRF 
was functioning within acceptable 
standards. 

A similar limitation relates to the 
spatial distribution of the surface soil 
measurements taken in the present 

study. The assessment, which focused 
on the residential area of Owino Uhuru, 
did not determine concentrations in 
the industrial areas to the west, south, 
and east of the facility. Moreover, within 
Owino Uhuru, significant assessment 
gaps are evident in Figure 1, particularly 
to the northwest of the facility. While 
this area is unlikely to present elevated 
concentrations resulting from aerial 
deposition, it is possible that the area 
could be contaminated by other means 
such as manual deposition of waste. 
However, interviews with community 
members did not indicate that this was 
the case. Nevertheless, that this area was 
not assessed here represents a limitation.  

A separate limitation of the study 
is its reliance on the IEUBK model 
to estimate BLLs. A previous 
study carried out at the site found 
comparable environmental levels, 
as well as a statistically significant 
increase in BLLs associated with 
residence in Owino Uhuru compared 
to a control neighborhood.49 Likewise, 
studies carried out elsewhere have 
found elevated BLLs resulting from 
similar environmental exposures.112 

Conclusions

Surface soil lead concentrations 
within Owino Uhuru were within 
international screening levels at the 
time of the study, and lower than many 
urban areas globally. As noted above, a 
soil concentration of 850–2,500 mg/kg 
would be required for a 2-year-old child 
to have a BLL of 20 µg/dL. It is unlikely 
that this concentration was ever present 
in Owino Uhuru. Accordingly, there 
did not appear to be a compelling need 
for off-site exposure mitigation work 
at the time of the assessment. Proper 
occupational and engineering controls 
and better siting of the residential area 
would likely have mitigated the lead 
poisoning event. Future use of the 
land should consider probable high 
contamination levels onsite. The results 

of this study could be used to inform the 
discussion on public health spending 
and to inform any future intervention at 
the site.
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